首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5489篇
  免费   1275篇
  国内免费   430篇
化学   2861篇
晶体学   17篇
力学   81篇
综合类   15篇
数学   65篇
物理学   4155篇
  2024年   5篇
  2023年   48篇
  2022年   219篇
  2021年   298篇
  2020年   349篇
  2019年   303篇
  2018年   245篇
  2017年   322篇
  2016年   377篇
  2015年   341篇
  2014年   594篇
  2013年   496篇
  2012年   426篇
  2011年   434篇
  2010年   340篇
  2009年   370篇
  2008年   359篇
  2007年   354篇
  2006年   222篇
  2005年   182篇
  2004年   133篇
  2003年   108篇
  2002年   91篇
  2001年   65篇
  2000年   81篇
  1999年   68篇
  1998年   61篇
  1997年   54篇
  1996年   44篇
  1995年   28篇
  1994年   25篇
  1993年   17篇
  1992年   22篇
  1991年   16篇
  1990年   21篇
  1989年   14篇
  1988年   11篇
  1987年   13篇
  1986年   3篇
  1985年   10篇
  1984年   11篇
  1983年   1篇
  1982年   9篇
  1980年   2篇
  1978年   1篇
  1975年   1篇
排序方式: 共有7194条查询结果,搜索用时 18 毫秒
21.
First-in-class CuII and AuIII metaled phosphorus dendrons were synthesized and showed significant antiproliferative activity against several aggressive breast cancer cell lines. The data suggest that the cytotoxicity increases with reducing length of the alkyl chains, whereas the replacement of CuII with AuIII considerably increases the antiproliferative activity of metaled phosphorus dendrons. Very interestingly, we found that the cell death pathway is related to the nature of the metal complexed by the plain dendrons. CuII metaled dendrons showed a potent caspase-independent cell death pathway, whereas AuIII metaled dendrons displayed a caspase-dependent apoptotic pathway. The complexation of plain dendrons with AuIII increased the cellular lethality versus dendrons with CuII and promoted the translocation of Bax into the mitochondria and the release of Cytochrome C (Cyto C).  相似文献   
22.
Two-photon excited fluorescent (TPEF) materials are highly desirable for bioimaging applications owing to their unique characteristics of deep-tissue penetration and high spatiotemporal resolution. Herein, by connecting one, two, or three electron-deficient zinc porphyrin units to an electron-rich triazatruxene core via ethynyl π-bridges, conjugated multipolar molecules TAT-(ZnP) n (n=1–3) were developed as TPEF materials for cell imaging. The three new dyes present high fluorescence quantum yields (0.40–0.47) and rationally improved two-photon absorption (TPA) properties. In particular, the peak TPA cross section of TAT-ZnP (436 GM) is significantly larger than that of the ZnP reference (59 GM). The δTPA values of TAT-(ZnP)2 and TAT-(ZnP)3 further increase to 1031 and up to 1496 GM, respectively, indicating the effect of incorporated ZnP units on the TPA properties. The substantial improvement of the TPEF properties is attributed to the formation of π-conjugated quadrapole/octupole molecules and the extension of D -π-A-D systems, which has been rationalized by density function theory (DFT) calculations. Moreover, all of the three new dyes display good biocompatibility and preferential targeting ability toward cytomembrane, thus can be superior candidates for TPEF imaging of living cells. Overall, this work demonstrated a promising strategy for the development of porphyrin-based TPEF materials by the construction and extension of D -π-A-D multipolar array.  相似文献   
23.
Two red-emitting dicyanomethylene-4H-pyran (DM) based fluorescent probes were designed and used for peroxynitrite (ONOO) detection. Nevertheless, the aggregation-caused quenching effect diminished the fluorescence and restricted their further applications. To overcome this problem, tetraphenylethylene (TPE) based glycoclusters were used to self-assemble with these DM probes to obtain supramolecular water-soluble glyco-dots. This self-assembly strategy enhanced the fluorescence intensity, leading to an enhanced selectivity and activity of the resulting glyco-dot comparing to DM probes alone in PBS buffer. The glyco-dots also exhibited better results during fluorescence sensing of intracellular ONOO than the probes alone, thereby offering scope for the development of other similar supramolecular glyco-systems for chemical biological studies.  相似文献   
24.
In this study, Fe3O4@TiO2 nanoparticles were synthesized as a new Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) hybrid imaging agent and radiolabeled with 89Zr. In addition, Fe3O4 nanoparticles were synthesized and radiolabeled with 89Zr. Df-Bz-NCS was used as bifunctional ligand. The nanoconjugates were characterized with transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. Radiolabeling yields were 100%. Breast and prostate cancer cell affinities and cytotoxicity were determined using in vitro cell culture assays. The results demonstrated that Fe3O4@TiO2 nanoparticles are promising for PET/MR imaging. Finally, unlike Fe3O4 nanoparticles, Fe3O4@TiO2 nanoparticles showed a fluorescence spectrum at an excitation wavelength of 250 nm and an emission wavelength of 314 nm. Therefore, in addition to bearing the magnetic properties of Fe3O4 nanoparticles, Fe3O4@TiO2 nanoparticles display fluorescence emission. This provides them with photodynamic therapy potential. Therefore multimodal treatment was performed with the combination of PDT and RT by using human prostate cancer cell line (PC3). The development of 89Zr-Df-Bz-NCS-Fe3O4@TiO2 nanoparticles as a new multifunctional PET/MRI agent with photodynamic therapy and hyperthermia therapeutic ability would be very useful.  相似文献   
25.
Recent research has focused on increasing the evidentiary value of latent fingerprints through chemical analysis. Although researchers have optimized the use of organic and metal matrices for matrix‐assisted laser desorption/ionization‐mass spectrometry imaging (MALDI‐MSI) of latent fingerprints, the use of development powders as matrices has not been fully investigated. Carbon forensic powder (CFP), a common nonporous development technique, was shown to be an efficient one‐step matrix; however, a high‐resolution mass spectrometer was required in the low mass range due to carbon clusters. Titanium oxide (TiO2) is another commonly used development powder, especially for dark nonporous surfaces. Here, forensic TiO2 powder is utilized as a single‐step development and matrix technique for chemical imaging of latent fingerprints without the requirement of a high‐resolution mass spectrometer. All studied compounds were successfully detected when TiO2 was used as the matrix in positive mode, although, generally, the overall ion signals were lower than the previously studied CFP. TiO2 provided quality mass spectrometry (MS) images of endogenous and exogenous latent fingerprint compounds. The subsequent addition of traditional matrices on top of the TiO2 powder was ineffective for universal detection of latent fingerprint compounds. Forensic TiO2 development powder works as an efficient single‐step development and matrix technique for MALDI‐MSI analysis of latent fingerprints in positive mode and does not require a high‐resolution mass spectrometer for analysis.  相似文献   
26.
Four half‐sandwich rutheniumII (RuII) complexes with triphenylamine‐modifed dipyridine frameworks were synthesized and characterized. The cytotoxicity of target complexes toward A549 (lung cancer cells), HeLa (cervical cancer cells) and HepG2 (hepatoma cells) were obtained by the MTT assay, which were superior to cisplatin with the IC50 values changed from 2.4 ± 0.1 μM to 9.2 ± 2.7 μM. Meanwhile, complexes possess the ability of antimetastasis to cancer cells. RuII complexes could be transported by serum albumin, catalyze the conversion of NADH (the reduced state of nicotinamide‐adenine dinucleotide) to NAD+ and induce the accumulation of reactive oxygen species, which confirmed the antineoplastic mechanism of oxidation. RuII complexes could enter A549 cells followed by a non‐energy dependent cellular uptake mechanism, target lysosomes with the Pearson's colocalization coefficient of 0.75, lead to lysosomal damage, disturb the cell cycle (S phase), and eventually induce apoptosis. The results demonstrate that these RuII complexes are potential anticancer agents with dual functions, including metastasis inhibition and lysosomal damage.  相似文献   
27.
Superoscillation is an intriguing wave phenomenon which enables subwavelength features propagating into far field and hence has potential applications in super‐resolution microscopy as well as particle trapping and manipulation. While previous demonstrations mostly concentrate on designing complicated nanostructures for generating uncontrollable superoscillatory functions, here a new technique which allows for creating polynomially shaped superoscillatory functions that contain phase singularity arrays is demonstrated both theoretically and experimentally. Such a technique is implemented in optical experiments for the first time and controllable superoscillatory lobes with feature much below the diffraction limit is achieved. More importantly, a general theoretical framework, which, to our knowledge, has not been reported before, is developed to show how the created superoscillations propagate to a distance of many Rayleigh ranges and eventually disappear when the distance is sufficiently larger. The validity of the model is confirmed by the experiments. The results may trigger further studies in light field shaping and manipulations in subwavelength scale.  相似文献   
28.
Epicocconone 1 is a natural chromophore isolated from the fungus Epicoccum nigrum that has shown applications in proteomics and fluorescent microscopy thanks to its unique pro-fluorescence properties. The modification of the skeleton of the natural product by replacing the triene side chain by a fluorenyl scaffold can noticeably increase the fluorophore's absorption coefficient. The synthesis of the analogues of the natural product has been made possible by the use of a palladium-catalyzed carbonylation reaction, allowing the construction of the β-keto-dioxinone key intermediate. Two-photon absorption cross-section measurements of the fluorenyl epicocconone analogues show a structure dependency with values ranging from 60 to 280 GM and live cell imaging show intense staining of intracellular vesicle-like structures around the nucleus.  相似文献   
29.
The side-on-end-on coordination of N2 can be very important to activate and functionalize this very stable molecule. However, such coordination has rarely been reported. This study reports a gas-phase species (a polynuclear vanadium nitride cluster anion [V5N5]) that can capture N2 efficiently (12 %), and the quantum chemistry modelling suggests an unusual side-on-end-on coordination. The cluster anions were generated by laser ablation and the reaction with N2 has been characterized by mass spectrometry, photoelectron imaging spectroscopy, and density functional theory calculations. The back-donation interactions between the localized d–d bonding orbitals on the low-coordinated dual metal (V) sites and the antibonding π* orbitals of N2 are the driving forces to adsorb N2 with a high binding energy (about 2.0 eV).  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号